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This paper reports a theoretical study of the electrostatic potential within a so-called pen-heterojunction
made up of two semi-infinite, doped semiconductor media separated by an electrolyte region. An external
potential is then applied across the entire system. Both the electrostatic potentials and double layer surface
forces are studied as functions of the usual double layer system properties, semiconductor properties such as
doping concentrations of acceptor and donator atoms, as well as applied potential. We find that both attractive
and repulsive forces are possible depending on the surface charges on the electrolyte-semiconductor interfaces,
and that these forces can be significantly modified by the applied potential and by the doping levels in the
semiconductors.
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I. INTRODUCTION

The electrical double layer adjacent to charged macro-
scopic surfaces has been an active subject of research for a
long time. Since the founding work of Gouy and Chapman,
Verwey, and Overbeek �1� on symmetric electrolytes adja-
cent to constant potential surfaces, we have seen extensions
to asymmetric electrolytes �2�, constant charge and charge
regulating surfaces �3,4�, nonuniformly charged surfaces
�5–8�, and surfaces of nonuniform shape, i.e., rough surfaces
�9–14�. In addition, steps have been taken to account for
higher-order statistical mechanical effects, such as ion-ion
electrostatic correlations and excluded volume effects
�15–17�. These extensions cover a range of features that ap-
pear in real systems and thus represent the true nature of
inhomogeneous electrolyte systems.

In this paper we study a new incidence of the electrical
double layer, possibly exemplifying a new area of applica-
tion of double layer theory to contemporary electronics tech-
nology. In recent years, with the growing interest in devel-
oping novel, environmentally friendly, cheap, and effective
electronics devices, some effort has gone into understanding
the workings of organic and aqueous electronics systems
�18–22�. In such systems it is no longer just the electronic
components �free electrons and holes� that are important to
system function, but also the interaction between the ionic
components �the electrolyte ions�. Although the main focus
of attention has been on dynamic behavior and properties,
the steady-state properties too are significant.

Two instruments are now in common use to monitor the
double layer interaction between two charged macroscopic
surfaces in an electrolyte: the surface force apparatus �SFA�
�23,24� and the atomic force microscope �AFM� �25�. The
SFA was recently featured in studies of systems �usually in-
volving moleculary smooth and uniformly thick mica sheets
with approximately 1 cm2 of exposed area� that allow one to
externally control electrical conditions in order to manipulate
the surface force. As one example, Connor, Horn, and An-
telmi �26,27� have replaced one of the two mica surfaces
with a mercury interface. They then externally applied an
electrical potential to the fluid mercury surface and moni-

tored the changes to the electrical double layer as well as
changes in the shape of the mercury-water interface.
Fréchette and Vanderlick �28–30�, on the other hand, modi-
fied the SFA by replacing one mica surface with a gold sur-
face and applied an external potential difference across the
triple layer �mica-electrolyte-gold� system: in effect, convert-
ing the SFA into an electrochemical device. Analogous de-
velopments have also been made using the AFM in the col-
loid probe arrangement �31,32�. These developmental efforts
can potentially extend the range of application of the SFA
and AFM to give greater insight into the workings of elec-
tronic devices incorporating aqueous electrolytes and/or
polymer electrolytes.

The next step motivated by the two SFA studies is to
consider the possibility of the outer two materials being
doped �p and n� semiconductors possessing intrinsic free
charges as well as being predoped to specified degrees. The
media therefore bear within them fixed doped charges as
well as free electron and hole carriers. Placed in parallel with
an intervening electrolyte �e� in chemical equilibrium with a
bulk phase, they form what can be called a pen-heterojunc-
tion in analogy with accepted semiconductor terminology;
the electrolyte �e� replaces the undoped intrinsic �i� semicon-
ductor material that is normally found in a so-called
pin-heterojunction. Although such a pen system with an ap-
plied potential has not, to our knowledge, been studied using
the SFA or AFM force measuring devices, it can be useful to
precede such work with a theoretical investigation of the
system’s double layer properties—both the electrostatic po-
tential and the double layer interaction. Apart from providing
general insight, the theoretical results can possibly lead to
suggestions of materials or conditions for best experimental
study. Here, we focus primarily on the electrostatic proper-
ties of the triple layer system, as a function of intervening
electrolyte thickness, applied external potential, surface
charge, bulk concentration of the intervening electrolyte, as
well as doping and intrinsic charge concentration in the
semiconductors. Since this already introduces a large number
of variables to study we leave out any electrochemical ef-
fects of the applied potential on the adsorption of aqueous
species such as reported in the SFA work of Fréchette and
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Vanderlick �29,30� and the AFM work of Wang et al. and
Barten et al. �31,32�.

The analysis and study is restricted to the steady state. A
full study requires expressions for the charge distributions
inside the semiconductor materia, which we assume are suf-
ficiently thick so as to be treated as infinite. In Sec. II we
provide a phenomenological derivation of expressions for
these distributions since a sufficiently useful thermodynamic
description of these charge distributions does not appear to
be explicitly available in the semiconductor literature. With
these, the mean-field electrostatic potential profile across the
triple layer region is then considered in Sec. III; both exact
and some simple, yet reasonable approximations are given.
In Sec. IV numerical results for symmetric univalent electro-
lytes are provided and discussed. We end the paper with a
short summary and indicate directions along which this work
can develop.

II. THERMODYNAMIC CHARGE DISTRIBUTION IN
SEMI-INFINITE SEMICONDUCTORS

Consider first the case of two semi-infinite, semiconductor
half-spaces in mathematical contact at z=0. The media are
continuous semiconductors each doped differently to differ-
ent extents. The medium defined for z�0 is doped with ac-
ceptor type atoms to a uniform concentration of Na, while the
medium z�0 is uniformly doped with donor type atoms to a
concentration Nd. The semiconductors are thus p type for z
�0 and n type for z�0 with an excess of free holes and
electrons, respectively. The heterojunction they form is then
a pn junction. In each of the media the charge bearers are
electrons, holes, and impurity atoms. The first two types are
mobile charge carriers while the doping atoms introduce a
neutralizing fixed background of uniform charge. At equilib-
rium the local steady state concentrations of the mobile
charge carriers are denoted n�z� for electrons �negative� and
p�z� for holes �positive�. Clearly, these functions will exhibit
discontinuities at the junction z=0.

At equilibrium and in the absence of an externally applied
potential, a potential difference VBI is set up across the outer
extremes of the p-type- and n-type-doped semiconductors
when their ends are in contact �or, as will be the case later, in
close proximity separated by an electrolyte�. The discontinui-
ties in the conduction and valence bands of these materials
give rise to charge carrier accumulation/depletion regions at
the interfaces, which is manifested in the built-in potential
VBI in order to maintain chemical equilibrium. The value of
VBI is a function of the chemical composition of the materials
and of the doping levels; it can be determined by the con-
straint that the chemical potentials of the electrons �the Fermi
levels� be the same in both semiconductors. Note that the
accumulation/depletion effects at the respective semiconduc-
tor interfaces can also, or alternatively, be represented as
surface charge�s� � at the junction�s�.

At infinite distance from the junction, an external bias
potential Vapp is applied over and above the built-in potential
VBI. The net effect is governed by the difference VD=VBI
−Vapp, which for our purposes is the only quantity that we
need to specify. For simplicity, we can assume grounding at

z=−� and a net potential difference of VD at z= +�. At
steady state, a continuous electric potential profile, ��z�, will
be set up through the system satisfying the far field condi-
tions

� → �0, z → − � ,

VD, z → + � .
�1�

These limits naturally imply the weaker condition

��

�z
→ 0, z → ± � , �2�

on the electric field. In turn this is consistent with the physi-
cal condition of overall system electroneutrality. Alternately,
electroneutrality can be expressed as the integral

�
−�

�

��z�dz = 0,

where

��z� = q�p�z� − n�z� + NdH�z� − NaH�− z�� �3�

is the local charge density. H�z� is the Heaviside step func-
tion. Necessary conditions for electroneutrality are the limits
��z�→0, as z→ ±�, or

p�z → − � � − n�z → − � � − Na = 0,

p�z → � � − n�z → � � + Nd = 0. �4�

We shall make use of notations customary in the semicon-
ductor field p�z→−� �= pp, n�z→−� �=np, p�z→ � �= pn,
and n�z→ � �=nn. In each semiconductor the continually on-
going electron-hole pair productions and annihilations result
at finite temperature in the steady state relations �33�

�ni,p�2 = nppp,

�ni,n�2 = nnpn, �5�

where ni,n and ni,p are the temperature-dependent, intrinsic
concentrations specific for the given semiconductors. More-
over, in the steady state the individual charge carriers are in
chemical potential equilibrium and thus there exist, in a
mean-field description, simple relations between the concen-
trations of the mobile species at the two extremes ±�

nn

np
=

pp

pn
= eq�VD, �6�

where �=1/kBT, kB is Boltzmann’s constant and T is the
temperature.

Equations �4�–�6� allow for the equilibrium electron and
hole concentrations infinitely far from the junction to be de-
termined in terms of the semiconductor intrinsic concentra-
tions, doping concentrations, and the net potential difference
VD. In fact, Eqs. �4� and �5� are equivalent to a set of qua-
dratic equations from which one immediately has �for
Na ,Nd�0�

nn =
Nd

2
+

Nd

2
�1 +

4�ni,n�2

Nd
2 � Nd +

�ni,n�2

Nd
, for ni,n � Nd,
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pp =
Na

2
+

Na

2
�1 +

4�ni,p�2

Na
2 � Na +

�ni,p�2

Na
, for ni,p � Na.

�7�

Provided there exist no further discontinuities in the semi-
infinite media, a continuous and piecewise smooth transition
from one spatial extreme �−� � to the other ���, can be ef-
fected using a local Boltzmann distribution weighted by the
locally varying electrostatic potential �. The statistical me-
chanics of electrons and holes are actually described by
Fermi-Dirac distribution functions. However, provided the
electron �or hole� energy �minus the chemical potential� is
sufficiently large compared to kBT, the distribution functions
will approximately be of the Boltzmann type �36�. The local
charge density in the semiconductor regions, consistent with
the argument described by Eqs. �1� and �4�–�6� is then

��z� = q�ppe−q���z� − nne−q�VDeq���z� − Na, z � 0,

ppe−q���z� − nne−q�VDeq���z� + Nd, z � 0.

Applying �4� once again results in an even more useful ex-
pression for the density,

��z� = q	
pp�e−q���z� − 1�

− nne−q�VD�eq���z� − 1�, z � 0,

ppe−q�VD�e−q����z�−VD� − 1�
− nn�eq����z�−VD� − 1�, z � 0,

�8�

where again the constant coefficients nn and pp are given by
Eq. �7�. Equation �8� describes the equilibrium charge den-
sity. The foregoing derivation is based on equilibrium argu-
ments and differs from the usual derivation based on large-
time limits of solutions of diffusion equations �34–36�.

When the two semi-infinite, semiconductors are separated
by a third, undoped semiconductor medium of intrinsic
charge bearer concentration ni and thickness d the system
forms a pin junction of a transistor. Alternately, we shall be
focusing on a modified version of this where the intervening
medium is a univalent electrolyte solution of ion density ne,
molar concentration ce, and thickness d. Consequently, this
triple-layer system could be analogously called a pen junc-
tion �see Fig. 1�. The above expression for the steady-state or
equilibrium density distribution �8� can then be used in the
doped semiconductor regions if modified slightly to account
for the shift in spatial coordinate definition. The complete
specification of charge density for the pen-heterojunction is
then

��z� = q	
pp�e−q���z� − 1�

− nne−q�VD�eq���z� − 1�, z � 0,

nee
−q���z� − nee

q���z�, 0 � z � d ,

ppe−q�VD�e−q����z�−VD� − 1�
− nn�eq����z�−VD� − 1�, z � d .

�9�

In Eq. �9� the assumption of a univalent electrolyte as
intervening medium is explicitly taken and we adopt the
usual mean-field Boltzmann approach even in this region.
This self-consistent expression for the equilibrium distribu-
tion of charges throughout a heterogeneous pen-junction is a

key result of the paper. A cursory examination of the stan-
dard texts in this subject �34–36� has not revealed a similar
discussion.

Although the experimental variables Na, ni,p, Nd, ni,n ac-
tually characterize the properties of the semiconductors, only
the parameters pp and nn come into play in the numerics.
Consequently, we shall only specify numerical values of pp
and nn in our calculations since we do not model any par-
ticular materia in this paper.

III. ELECTROSTATIC POTENTIAL PROFILE

With the piecewise defined charge density specified, the
corresponding electrostatic potential profile in the system can
be determined by application of standard electrostatic prin-
ciples. In general, the three dielectric materia form a sand-
wich occupying the region −L1	z	0, where L1 can be in-
finite, the electrolyte region 0	z	d, and the interval d	z
	d+L2, where L2 can be infinite. We denote the entire space

. The everywhere continuous and piecewise smooth elec-
trostatic potential can be obtained locally as the solution of
the Poisson equation

d

dz

��z�

d

dz
��z�� = −

��z�
�0

, z � 
 , �10�

where ��z� is a piecewise constant dielectric permittivity
function defined as

��z� = 	�I, z � 0,

�II, 0 � z � d ,

�III, z � d

for the composite system. Apart from the requirements on �
at the extremes of z, Eqs. �1� and �2�, the electrostatic poten-
tial is also subject to the following matching conditions at
the interfaces z=0 and z=d:

��0+� = ��0−� ,

��d+� = ��d−� ,

FIG. 1. Schematic of the pen-heterojunction.
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�II
��

�z
�0+� − �I

��

�z
�0−� = −

�p

�0
,

�III
��

�z
�d+� − �II

��

�z
�d−� = −

�n

�0
. �11�

The first of these equations imply the continuity of the elec-
trostatic potential across the electrolyte-semiconductor inter-
faces. The last two equations impose the condition that the

discontinuity of the electric displacement �D�=�E�� at an in-
terface be equal to the intrinsic surface charge there. Note
also that only by allowing for charge and potential distribu-
tions in all three regions is it possible to simultaneously im-
pose constant charge conditions �Eqs. �11�� and constant po-
tential conditions �Eqs. �1��. Only one of either such
condition can be applied in the case of a single medium,
since the governing equation for the potential is of second
order.

A. Linear density approximation

The problem of determining the potential distribution un-
der arbitrary conditions will generally involve numerical
techniques. However, under certain circumstances the prob-
lem can be simplified sufficiently to enable an approximate
analytic solution. An analytic solution is in fact a useful
guide to confirm the physical correctness of the model and
even to provide a quantitative check on numerical solutions
in restricted cases. In this and the next subsection, we pro-
vide such analytic solutions. The most obvious simplification
is based on the assumption of low difference potentials VD.
In such cases the potential function will satisfy the condition
�� � 	 �VD � �kBT /q. Consistent with this assumption, the vol-
ume charge density ��z� in Eq. �9� will to a good approxi-
mation be given by

��z� � 	
−

q2�

�I�0
�pp + nn�1 − q�VD����z�, z � 0,

−
2q2�ne

�II�0
��z�, 0 � z � d ,

−
q2�

�III�0
�pp�1 − q�VD� + nn�

� ���z� − VD�, z � d .

�12�

Consequently, the Poisson equation becomes a piecewise lin-
ear differential equation for the potential, �. A general solu-
tion of Eq. �10� with Eq. �12� that satisfies the electroneu-
trality conditions �1� and �2� is simply

��z� = 	e
pzBI, z 	 0,

e−
zAII + e
zBII, 0 	 z 	 d ,

e−
nzAIII + VD, z � d .

�13�

Here, 
p
2 =q2��pp+nn�1−q�VD�� /�I�0, 
n

2=q2��nn+ pp�1
−q�VD�� /�III�0, and 
2=2q2�ne /�II�0. The latter defines the
usual Debye screening parameter of electrolyte theory �1�.
The inequality 0�VD�kBT /q ensures that 
n

2 and 
p
2 will

always be positive. Hence, in their capacity as scaling factors

in the exponential functions 
n and 
p are well defined, real-
valued screening parameters governing the decay of the po-
tential and field in the two respective doped semiconductors.
The constants BI, AII, BII, andAIII are determined upon appli-
cation of the remaining boundary conditions �11�. These give
the following inhomogeneous system of four equations in the
four constants:

BI = AII + BII,

�I
pBI + �II
�AII − BII� = − �p/�0,

AIIIe
−
nd + VD = AIIe

−
d + BIIe

d,

− �III
nAIIIe
−
nd + �II
�AIIe

−
d − BIIe

d� = − �n/�0

which can be uniquely inverted. The first two lead to

BI =
2�II
BII − �p/�0

��I
p + �II
�
,

AII =
��II
 − �I
p�BII − �p/�0

��I
p + �II
�
,

while the last two equations result in the system AX=Y,
where

A = 
 − 1 ��II
 cosh�
d� + �I
psinh�
d��
�III
n �II
��II
sinh�
d� + �I
p cosh�
d��

�
and

X = 
 AIIIe
−
nd

2BII

��I
p + �II
�
�, Y = 
 VD + �p

�n/�0 − �p
� ,

where �p=�pe−
d /�0��I
p+�II
�. The system is to be solved
for constants AIII and BII. For reasons of space, we do not
give this solution explicitly nor do we give any explicit nu-
merical examples of this approximation. One justification for
including this result here is that with the linear model one
can study with minimal effort the qualitative behavior of the
system and its dependence on the principal parameters. Al-
though quantitatively limited in accuracy such a study of
parameter space may be useful to the experimentalist.

B. Counterion dominant approximation

In the more general case of a non-negligible net difference
potential VD=VBI−Vapp, it is reasonable that the potential in
the semi-infinite half-space z�d will be of the order of VD,
while in the half-space z�0 the potential will be quite low in
magnitude. In the central region, however, the potential can
be significant. It is possible to exploit these expectations in
order to once again simplify the problem. In quantitative
terms, the potential in the two outer regions can be assumed
to approach the respective limits sufficiently rapidly that, on
the left, ��kBT /q, while on the right, ��−VD � �kBT /q,
even though VD itself is not necessarily small. Any errors
that arise as a result of these assumptions are most likely to
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appear within the first Debye lengths 
p and 
n of these
respective semi-infinite regions. Furthermore, in the central
region the magnitude of the potential can be sufficiently
large, �� � �kBT /q �especially if VD is significant�, that the
counterion concentration will dominate over the co-ion con-
centration in the total volume charge density ��z�. By this we
mean that exp�−q���	1�exp�q���. Consequently, the
charge density would be approximately

��z� � 	−
q2

kBT
�pp + nne−q�VD���z�, z � 0,

− qnee
q���z�, 0 � z � d ,

−
q2

kBT
�ppe−q�VD + nn����z� − VD�, z � d .

�14�

As a consequence of the linear potential-density relation in
the outer two regions, the potential is similar in appearance
to Eq. �13�:

��z� = �e
pzBI, z 	 0,

e−
nzAIII + VD, z � d .
�15�

For convenience we have used the same notation for the
decay length parameters, although they are now defined to be

p

2 =q2��pp+nne−q�VD� /�I�0, 
n
2=q2��nn+ ppe−q�VD� /�III�0.

The two constants BI and AIII in Eq. �15� are specified in
terms of the solution within the electrolyte medium through
the boundary conditions �11�. Specifically,

q�BI = q���0+� ,

q�AIII = q�e
nd���d−� − VD� . �16�

As argued, the Poisson-Boltzmann equation �10� plus Eq.
�9� describing the potential � in 0�z�d is approximately

d2

dz2� =
q

�II�0
neexp�q���, z � �0,d�

or, in terms of nondimensional variables s=
z, y=q� /kBT,

d2y

ds2 =
1

2
exp�y�, s � �0,
d� . �17�

A first integral of Eq. �17� can be effected in the standard
manner to give

�
dy

ds
�2�

y
− �
dy

ds
�2�

y0

= exp�y� − exp�y0� �18�

for s� �0,
d�, y0=y�s0�, where s0 is some convenient refer-
ence point of the coordinate variable.

A second integral of Eq. �17� will be possible with the
following mathematical construct. Although a physical solu-
tion to Eq. �17� is defined only in the closed interval �0,
d�,
we consider for the present the extension of the solution
beyond this interval. We choose s0 to be that first point in
�−� , � � beyond �0,d� at which the derivative of the ex-
tended function vanishes. That is, we choose s0 to be an
extreme point—in fact a minimum point—of the extended
potential. Thus, we suppose

� ª exp�y�s0�� ,

y��s0� ª 0. �19�

Since s0 is a minimum point, the potential y in �0,
d� will be
an increasing function of s. Consequently, the order of the
terms in Eq. �18� can be maintained when a square root is
taken. This gives

dy

ds
= ± �exp�y� − � , �20�

where the sign �+ve� must be chosen to agree with the ex-
pected sign of the derivative. By defining a new dependent
variable �=exp�−y /2�, Eq. �20� can be rearranged and re-
written in integral form as

�� d�

�1 − ��2
= −

1

2
s + C ,

where C is a generic integration constant. The above integral
has an explicit function representation

�� d�

�1 − ��2
=

1
��

arcsin����� ⇒ arcsin��
1
2�� = −

1

2
�1/2s

+ C ⇒ ��s� = �−1/2sin
C −
1

2
�1/2s� .

Using either of the conditions in Eq. �19� we find that the
constant C must satisfy

C =
1

2
�1/2s0 + �2n − 1�

�

2
, n = 1,2,3, . . . .

Although an academic point �as an analysis will show�, the
root n=1 is the only physically relevant one to ensure the
correct monotonicity in the potential. Consequently, the
function

��s� = �−1/2cos
1

2
�1/2�s0 − s�� �21�

clearly satisfies Eq. �20� and condition �19�. From Eq. �21�
we see that for a physically relevant solution we must have
that s� �s0−��−1/2 ,s0+��−1/2�.

Still remaining to be determined are the unknown param-
eters � and s0. These, together with the constants, BI and AIII,
are determined by applying the boundary conditions �11�
which, after some rewriting, reduce to the following inhomo-
geneous algebraic system:

− 2�I
pln���0�� + 2�II
�d�

ds
�

0

1

��0�
= −

q��p

�0
,

2�III
nln���
d�� + 2�II
�d�

ds
�


d

1

��
d�

= − �III
nq�VD −
q��n

�0
. �22�

In turn, using Eq. �21�, these become
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− 2�I
pln��−1/2cos
 �1/2s0

2
�� + �II
�1/2tan
 �1/2s0

2
� = −

q��p

�0
,

2�III
nln��−1/2cos
 �1/2

2
�s0 − 
d���

+ �II
�1/2tan
 �1/2

2
�s0 − 
d�� ,

=− �III
nq�VD −
q��n

�0
. �23�

We therefore arrive at two transcendental equations in the
two unknowns, �1/2and s0. Equation �23� is a nonlinear sys-
tem, which can only be solved in general by numerical
means. However, once done the solution pair can be inserted
in Eq. �16� to produce a potential profile everywhere
throughout the junction. Once again, for reasons of space we
do not provide any explicit numerical examples, but place
numerical focus instead on the symmetric electrolyte case
described in the next section. The results of the present ap-
proximation, however, involve little more than the familiar
trigonometric functions and are therefore easier to implement
than the elliptic functions that arise in the symmetric electro-
lyte model given below. The above results might therefore be
of more immediate use to the experimentalist for a first
analysis of measurements.

C. Symmetric electrolyte

The full double layer problem with difference potential
can be solved in a manner similar to the counterion-only
approximation. The Poisson-Boltzmann equation in z
� �0,d�, including both co-ion and counterion distributions
becomes

d2�

dz2 =
qne

�II�0
�exp�q��� − exp�− q���� .

To solve this we follow the method of Refs. �2,37,41�. In
similar spirit to the previous section, we consider the exten-
sion of the function � to a new function whose domain of
definition extends beyond �0,d�. The restriction of this new
function �which satisfies the conditions at z=0 and z=d� to
the given interval will be the solution we seek. For conve-
nience we again use � to denote both these two functions.
Now introduce the new dependent variable y=q����z�
−��z0��. That is, the difference between the normalized po-
tential at an arbitrary position, z, and the normalized poten-
tial value at the extremum point z=z0, where d� /dz=0. In
nondimensional form the Poisson-Boltzmann equation be-
comes

d2y

ds2 =
1

2
�exp�y��−1 − exp�− y��� ,

where again we employ the variable s=
z �with s� �0,
d�
referring to the physically relevant interval� and define �
ªexp�−q���z0��. For the sake of argument we assume in
this discussion that ��0 in which case 0���1 �although,

in the numerical implementation, both positive and negative
potentials are accommodated�. A first integral again can be
effected giving

�
dy

ds
�2�

y
= �exp�y��−1 + exp�− y�� + C� , �24�

where C is determined by the zero derivative condition at the
maximum s=s0, where y=0 and y�=0:

C = − �� + �−1� .

Introducing the variable �=exp�y����0 �in fact ��1�,
the first integral can be written as

d�

ds
= +

1

�1/2
��2� − ��2 + 1��2 + �3

= + �1/2���� − 1����−2 − 1� , �25�

where the positive root has been taken to ensure a monotoni-
cally increasing potential. The order of the terms within the
factors under the root sign is important to ensure their posi-
tivity. A primitive to Eq. �25� can be provided, at least for-
mally. Define �−1= t2 we have

�
1/��

1 dt
��1 − �t2��1 − t2�

=
1

2�1/2 �s − s0� ¬ u , �26�

where the limits on the integral satisfy the condition at the
minimum and thereby conform to the expected magnitude of
�. The left-hand side of Eq. �26� is an elliptic integral satis-
fied by the Jacobi elliptic function cd�u ,��, with argument u
and modulus � �38–40�. Thus, the physically relevant poten-
tial for s� �0,
d� is obtained from the relation

1

��s�
= cd2
 �s − s0�

2�1/2 ,�� = exp�− y� . �27�

As in the preceding section the hitherto unknowns, s0 and
�, are determined by application of the boundary conditions
�11� at the physical extremities z=0 and z=d. In terms of the
variables, � and s, these are given explicitly by

− �I
pln���0�/�� + �II
�d�

ds
�

0

1

��0�
= −

q��p

�0
,

�III
nln���
d�/�� + �II
�d�

ds
�


d

1

��
d�
= �III
nq�VD +

q��n

�0
.

�28�

Hence, inserting Eq. �27� into this system we obtain

�II

�1 − �2�

�1/2 � sc

dn
�

s0/2�1/2
+ 2�I
pln
�cd�s0/2�1/2� = −

q��p

�0
,

�II

�1 − �2�

�1/2 � sc

dn
�

�s0−
d�/2�1/2
− 2�I
pln
�cd��s0−
d�/2�1/2�

= − �III
nq�VD −
q��n

�0
. �29�

where dn and sc are two other elliptic functions �38–40�. As
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in the counterion only case, the roots of this system of tran-
scendental equations must be solved numerically for the val-
ues of s0 and �.

IV. NUMERICAL RESULTS AND DISCUSSION

For all the cases shown in this section we assume a sym-
metric univalent electrolyte in the intermediate region. Sec-
ondly, we point out that most surfaces when immersed in an
electrolyte solution acquire a surface charge either by ad-
sorption of ionic species or dissociation of outerlying surface
groups. This contingency, which does not normally arise in
standard pin-heterojunctions, is taken into account. Such
mechanisms are over and above those that can lead to an
effective surface charge at the free surface of a semiconduc-
tor due to surface bound electronic states with forbidden
bandgap energies as was discussed earlier �36�. For general-
ity we consider the influence of surface charges on both
semiconductor interfaces. All results shown here agree with
those found by numerically solving the nonlinear PB equa-

tion in the electrolyte region employing the linear approxi-
mations in the semiconductor media. A user-friendly, execut-
able program, valid for arbitrary electrolyte, is available from
the authors. No attempt has been made to solve the model
involving fully nonlinear differential equations in all three
regions. Nor have the approximations outlined in Secs. III A
and III B been compared with full numerical solutions.

The full extent of parameter space representing this sys-
tem has quite a few more dimensions than typically consid-
ered in the double layer literature and not possible to fully
explore here. Fortunately, it is not necessary to completely
cover the entire spectrum of values in order to get a qualita-
tive feel for the system’s dependence on these parameters.
Potential profiles spanning the three regions of p-type semi-
conductor, electrolyte, and n-type semiconductor are shown
in Figs. 2–7 and 14, for a range of electrolyte concentrations,
ne, surface charge on the n-type semiconductor surface �n
and net difference potential VD. In the outer media, depths of
only two decay lengths 
p and 
n are explicitly represented.
The results shown in these figures and the discussion below

FIG. 2. �Color online� Electrostatic potential profile across the pen-heterojunction. �a� An overview across the entire heterojunction. �b�
and �c� show detailed views in the p-type and n-type semiconductor regions, respectively. Here, �p=0.0 C m−2 and ce=10.0 mM, while for
each set �bottom to top of figure� �n=1.60 �solid green lines�, 7.44 �dashed red lines�, 34.52 �dotted blue lines�, 160.2 �solid black lines�
�10−4 C m−2 and for each �n set, the applied voltages from bottom to top are VD� �1.0,5.62,31.62,177.83,1000.0� �10−4 V. The
electrolyte thickness is d=26.25 nm. Other system parameters are �I=10, �II=78.5, �III=25 T =298 K, pp=10−6 M, nn=10−5 M.
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indicate some of the general trends as electrolyte concentra-
tion, magnitude of surface charge �n and applied potential
are increased. Generalizations to other cases not explicitly
presented here can readily be made.

Figures 2–7 �specifically �a� in Fig. 2� give an overview
of the dependence of the electric potential on �n and VD for
�p=0 and for a single �arbitrary� electrolyte thickness of d
=26.3 nm. Irrespective of �n, the potential to the extreme
right of the n-type semiconductor region tends to the stipu-
lated value of VD. The curvature of the profile here depends
on the potential value on the interface z=d, which, for elec-
trolyte concentrations of 10−2 and 10−3 M, is largely gov-
erned by the value of the surface charge on this interface.
The dominant role played by �n over VD extends into both
the electrolyte region as well as into the p-type semiconduc-
tor. It is only for very low surface charges that the applied
potential makes any quantitative impact on the potential val-
ues either at or to the left of the boundary at z=d. This is

more apparent in Figs. 4 and 5. Furthermore, the sequence of
Figs. 2–5 suggests that this domination decreases as the elec-
trolyte concentration decreases. We then infer that the elec-
trolyte screens the p-type semiconductor from the potential
applied at the extreme right of the n-type semiconductor.
Moreover, this screening is most effective when there is a
substantial surface charge on �at least� the p-type semicon-
ductor interface since this draws in more ions from the bulk.
This behavior may have some practical importance for de-
vice design.

Qualitatively different looking profiles appear when both
surfaces possess a finite charge of opposite sign. In the case
shown in Figs. 6 and 7 the p-type semiconductor possesses a

FIG. 3. �Color online� Electrostatic potential profile across the
pen-heterojunction. Numerical details as in Fig. 2, except ce

=1.0 mM and only the overview is shown.

FIG. 4. �Color online� Electrostatic potential profile across the
pen-heterojunction. Numerical details as in Fig. 2, except ce

=0.1 mM and only the overview is shown.

FIG. 5. �Color online� Electrostatic potential profile across the
pen-heterojunction. Numerical details as in Fig. 2, except ce

=0.01 mM and only the overview is shown.

FIG. 6. �Color online� Electrostatic potential profile across the
pen-heterojunction. Here, �p= +1.6�10−2 C m−2 and ce=1.0 mM.
For each set �top to bottom of figure� surface charges on the n-type
semiconductor are �n=−1.60 �solid green lines�, −7.44 �dashed red
lines�, −34.52 �dotted blue lines�, −160.2 �solid black lines�
�10−4 C m−2 and for each �n, the applied voltages from bottom to
top are VD� �1.0,4.64,21.54,100.0� �10−2 V. Other system pa-
rameters are as in Fig. 2.
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�fixed� positive surface charge �p=0.016 cm−2, while the
n-type semiconductor carries a negative surface charge �n
�0. For these cases, the contribution by the applied potential
is of opposite sign to �n, so the effect of increasing VD is to
make the net effective surface charge on the n-type interface
more positive. Once again, this effect is most clearly appar-
ent when ��n� is lowest. At the �n value of greatest magni-
tude, the potential again does not have any influence on the
profile to the left of the right-hand boundary, even for the
extreme value of VD=1 V. More importantly, the potential
profile in the p-type semiconductor is all but independent of
either �n or VD, especially at the higher electrolyte concen-
tration, but also at the lower concentration. This we interpret
as the influence of the surface charge �p on the interface at
z=0; the electrolyte here serves only to influence the height
of the potential at z=0, through screening. We thus expect
that increasing the electrolyte concentration will �a� further
decrease the potential heights at the interfaces and �b� further
reduce the impact of the applied voltage on the potential
profile within both the electrolyte and the p-type semicon-
ductor regions. Again, this behavior might have conse-
quences for the design of electrolyte-semiconductor devices.

It is well known �8,24,41� that the double layer stress PDL
between two plane parallel surfaces separated by an isotropic
electrolyte medium of thickness, d, can be determined via the
kinetic-Maxwell stress formula �24,42�

PDL�d� = kBT�
i=1

N

�ni�z� − ni
0� −

1

2
�0�II
d��z�

dz
�2

, �30�

evaluated at any position z in the interval �0,d�, the natural
choices for z being, of course, z=0 and z=d. We have em-
ployed this expression to generate the interaction data shown
in Figs. 8–13. We remark first that the theoretical arbitrari-
ness of the z point is not always numerically upheld in prac-
tice. Specifically, in those cases where the potential and field
values at the left-hand boundary are small, the formula be-
comes unreliable and generally does not agree with the force

value found using the field and potential on the right-hand
boundary, which seems reliable at least out to separations of
about 10 Debye lengths. On the other hand, once the poten-
tial and field values become sufficiently large �e.g., when the
separation has decreased enough for the interaction to be
significant� the two evaluations give identical results. To en-
sure general reliability and accuracy, data from the right-
hand interface was routinely used for all the results explicitly
shown here.

Although the difference potential VD is a constant poten-
tial condition acting over the whole system, it comes into
play as a constant surface charge term in the boundary con-
dition at the right-hand interface, Eqs. �22�, �23�, �28�, and
�29�, reinforcing a positive intrinsic charge �n and counter-
ing a negative intrinsic charge. Consequently, under all �n
and VD conditions the two interfaces bounding the electrolyte
are effectively constant charge surfaces. All possible cases
should then be consistent with the findings of McCormack et
al. �41�. It should, for example, be expected that the interac-

FIG. 7. �Color online� Electrostatic potential profile across the
pen-heterojunction. Numerical details as in Fig. 6, except ce

=0.01 mM.

FIG. 8. �Color online� Double layer pressure as a function of
thickness of electrolyte medium d. Numerical details as in Fig. 2.

FIG. 9. �Color online� Double layer pressure as a function of
thickness of electrolyte medium d. Numerical details as in Fig. 2,
except ce=0.1 mM.
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tion will be repulsive under those conditions for which the
constant charge surfaces are of like sign, including the case
when one of the surfaces has zero charge, and be attractive at
least at large separations, when the surfaces are of opposite
sign. In the latter case the attraction could turn repulsive at
short separations if the magnitude of the smaller charge is
low enough. Consequently, we anticipate that in cases when
they counteract, the force could possibly change from attrac-
tive to repulsive when the strength of VD is large enough to
compensate for �n.

When VD reinforces �n, the repulsive pressure between
the two semiconductor media show the same saturation phe-
nomenon with surface charge as found with the potential
profiles discussed above. For a given electrolyte concentra-
tion, it is only for the lower surface charges that the applied

potential makes any quantitative difference to the interaction.
Not surprisingly, increasing the potential increases the repul-
sion. For sufficiently large surface charges, however, in-
creases in VD do not affect the magnitude of the interaction.
Fréchette and Vanderlick �28,29� reported a similar force
saturation effect with applied potential for their mica-water-
gold system. Although mica is an insulator and gold a con-
ductor, the saturation phenomena in that system and in our
model involving semiconductors might well have the same
origin. For these strictly repulsive cases, the forces demon-
strate the usual exponential decay with separation governed
by the Debye length of the electrolyte medium 
. As found
with the potential profiles, reducing the electrolyte screening
allows for a greater variation in the pressure with VD. This is
again more pronounced at the lower surface charges.
Whether these variations can be distinguished in actual force
measurements is, however, to be seen.

Figures 11 and 12 show the double layer pressure for the
case when the p-type semiconductor possesses a positive sur-

FIG. 10. �Color online� Double layer pressure as a function of
thickness of electrolyte medium d. Force curve sets �top to bottom
of figure� generated for ce=0.01 �solid green lines�, 0.1 �dashed red
lines�, 1.0 �dotted blue lines�, 10.0 �solid black lines� mM. Within
each set, the applied voltages from bottom to top are VD

� �1.0,5.62,31.62,177.83,1000.0� �10−4 V. Surface charge on the
n-type semiconductor is �n=1.60�10−4 C m−2. Other system pa-
rameters are as in Fig. 2.

FIG. 11. �Color online� Double layer pressure as a function of
thickness of electrolyte medium d. Numerical details as in Fig. 6.

FIG. 12. �Color online� Double layer pressure as a function of
thickness of electrolyte medium d. Numerical details as in Fig. 6,
except ce=0.01 mM.

FIG. 13. �Color online� Double layer pressure as a function of
thickness of electrolyte medium d. Numerical details as in Fig. 6,
except nn=10−3 M.
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face charge, while the n-type semiconductor possesses a
negative surface charge, in competition with the positive ap-
plied potential. The results for these cases are shown on an
arc-sinh scale in order to capture both attractive and repul-
sive interaction regions. Again, the qualitative behavior
shown here is consistent with the analysis of McCormack et
al. of constant charge surface interactions, for oppositely
charged surfaces. At ce=1 mM, the forces for the two lowest
�in magnitude� �n values exhibit a very weak, long-ranged
attractive part when the positive applied potential is also low.
But this attraction, at a given separation, quickly becomes a
repulsion when VD is increased, which results in a net effec-
tive positive surface charge on the n-type boundary. As �n
becomes more negative, larger applied potentials are re-
quired to turn the interaction repulsive. The most negative
value of �n corresponds, in the absence of VD, to the fully
antisymmetric surface charge system with the greatest mag-
nitude attraction at all separations. In this case, not even a
1 V applied potential significantly affects the attraction, let
alone converts it to a repulsion. At an electrolyte concentra-
tion two-orders of magnitude lower, the forces show analo-
gous qualitative trends. We should point out that there is no
physical attribute to the shoulder-like appearance of some of
the curves, which is simply an artifact of the arc sinh scale �it
would also appear with a sufficiently large linearly increas-
ing force�.

Finally, an increase in the electron concentration in the
n-type semiconductor nn achieved by increasing the doping
concentration Nd �via Eq. �7�� results, somewhat counterin-
tuitively, in more repulsive double layer forces as shown in
Fig. 13. This can be understood by looking at the corre-
sponding potential profiles shown in Fig. 14, which show
that increasing nn effectively brings the “point of applica-
tion” of the external potential closer to the z=d interface; the
material becomes more conductorlike. The constraints on the
potential and field at this interface give rise to more symmet-
ric looking potential profiles within the electrolyte region.
These in turn result in more repulsive forces.

V. CONCLUDING REMARKS

The extension of the ordinary double layer system to in-
clude effects of semiconductor properties of the materials
bounding the electrolyte, as well as the effect of an exter-
nally applied potential, has been studied in this paper. Sev-
eral features in both the electrostatic potential profiles in the
three media and associated double layer forces have been
found and discussed in terms of the functions’ dependence
on system parameters.

There are several avenues for further theoretical study that
can be taken, the most important is the building-in of a self-
consistent dependence of applied potential on surface charge
properties �i.e., charge regulation�. This should place the
model on a more realistic standing. Another avenue of study
involves replacing the solid semiconductors with porous or-
ganic polymer semiconductors, thus allowing for the migra-
tion of ions into the two outer media. Such a study is moti-
vated by the current interest in organic polymer systems as
cheap and environmentally friendly transistor devices
�19–22�. Finally, the mean-field continuum model used here
clearly ignores the finite sizes of both electrolyte ions and
solvent molecules. However, with the application of strong
electric fields as described here, discrete ion/solvent effects
are likely to contribute significantly to the final forces.
These, as well as possible dielectric saturation effects, should
also be studied in a more refined model.

An experimental surface force study paralleling this the-
oretical modeling is highly desirable. The nature of the semi-
conductor media, however, may not be consistent with the
current FECO method of determining the surface separation
in the SFA. On the other hand, our results suggest that ex-
cessively thick semiconductor materials may not be neces-
sary. In this case it might be possible to introduce partially
reflective surfaces on the outer sides of the semiconductors
in order to determine surface separations. While separation
determination for this system might not be a problem with
the AFM colloid probe technique, it may be necessary to
provide an analogous sphere-flat model for a direct compari-
son between theory and experiment.
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